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Introduction
The Gambler’s Ruin problem frames a gambler who begins gambling with an initial fortune - in dollars say.
At each successive gamble, the gambler either loses $1 or gains $1. The problem is to find the probability
that the gambler goes bankrupt - loses the entirety of the fortune. This problem is a kind of random walk.
Figures 1 and 2 below show simulation trajectories for this setup.

1 The Problem
A Gambler begins with $k and repeatedly plays a game after which they may win $1 with probability p or
lose $1 with probability q = 1− p. The Gambler will stop playing if their fortune reaches $0 or $N. What
is the probability that they go bankrupt?

2 The Solution
Let uk be the probability that the Gambler bankrupts if the initial fortune is $k. Then we can condition
this probability on the first gamble as follows (utilising the law of total probability with the partitioning
of lose/win):

uk = P (wins)× uk+1 + P (loses)× uk−1

This is a second order homogeneous difference equation. We look for solutions of the form un = A×λn.

p× un+1 − un + qun−1 = 0

=⇒ p×A× λn+1 −A× λn + q ×A× λn−1 = 0

=⇒ λ2 − 1

p
λ+

q

p
= 0

where p, q 6= 0. This has solution:

λ1,2 =

{
1− p
p

, 1

}
provided that p 6= 1

2 , this gives 2 different solutions. We have:

un = A

(
1− p
p

)n

+B(1)n

= A

(
1− p
p

)n

+B

We have that the Gambler stops gambling if either their fortune reaches $0 or $N. So we have the
following boundary conditions:

u0 = 1, uN = 0

1



Figure 1: This is a plot of 50 simulations with k = 13, p = 0.55,N = 25. The theory results in a probability
of 0.0674 of bankruptcy and an expected number of steps of 103.14. The horizontal green line represents
$N and the horizontal red line represents $0.
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Figure 2: This is a plot of 1000 simulations with k = 13, p = 0.55, N = 25. The theory results in a
probability of 0.0674 of bankruptcy and an expected number of steps of 103.14. The horizontal green line
represents $N and the horizontal red line represents $0.
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Using these boundary conditions, we can solve for A and B:

u0 = A

(
1− p
p

)0

+B = 1

=⇒ A+B = 1

=⇒ B = 1−A
and

uN = A

(
1− p
p

)N

+B = 0

=⇒ B = −A
(
1− p
p

)N

=⇒ 1−A = −A
(
1− p
p

)N

=⇒ A =
1

1−
(

1−p
p

)N
=⇒ B = 1−A =

−
(

1−p
p

)N
1−

(
1−p
p

)N
Giving the final solution:

un =

(
1−p
p

)n
−
(

1−p
p

)N
1−

(
1−p
p

)N (1)

For the case where p = 1
2 , we try the next most complex expression, let:

un = (An+B)× λn

with λ = 1:

un = (An+B)

We can try this in the original equation with p = q = 1/2:

1

2
un+1 − un +

1

2
un−1 =

An

2
+
A

2
+
B

2
−An−B +

An

2
− A

2
+
B

2
= 0

Using the boundary conditions:

u0 = B = 1

uN = AN +B = 0 =⇒ A =
−1
N

Giving the final equation as:

un = 1− n

N
(2)

We have the final equations for the probability of bankruptcy as:

un =


1− n

N if p = 0.5

( 1−p
p )

n−( 1−p
p )

N

1−( 1−p
p )

N if p 6= 0.5 and p 6= 0

1 if p = 0

(3)

Note: The case where p = 0 is obtained by multiplying the numerator and denominator of the p 6= 0.5
case by pN and simplifying.
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3 Expected Number of Steps
We can now ask the question "How many times is the Gambler expected to be able to gamble until he
stops?". We can approach the solution in a similar manner as the probability calculation in the previous
section. Namely, conditioning on the first gamble.

Let En be the expected number of steps until the Gambler’s fortune reaches either $0 or $N if the
fortune starts at $n. We then condition on the first gamble as follows:

Expected Steps from n = p× (1 + Expected Steps from n+1) + q × (1 + Expected Steps from n-1)

En = p× (1 + En+1) + q × (1 + En−1)

Re-writing:

p× En+1 − En + q × En−1 = −1

Unlike in the previous section, this is a heterogeneous equation. A solution to this equation can be
written in the form: En = wn + vn. We first find a solution to the homogeneous equation (wn) and a
solution to the heterogeneous equation (vn).

As before, let wn = Aλn, where A is a constant. We have:

pwn+1 − wn + qwn−1 = 0

=⇒ λ2 − 1

p
λ+

q

p
= 0

Giving solutions:

λ1,2 = (
q

p
, 1)

Our solution to the homogeneous equation is then:

wn = Aλn1 +Bλn2 = A(
q

p
)n +B

For a particular solution (vn) to the heterogeneous equation we try vn = Cn:

pC(n+ 1)− Cn+ qC(n− 1) = −1

=⇒ pC − qC = −1

Giving:

C =
−1
p− q

and our particular solution is

vn =
−n
p− q

Giving the full solution as

En = wn + vn = A(
q

p
)n +B − n

p− q
(4)

Using the boundary conditions E0 = 0, EN = 0

E0 = A+B = 0 =⇒ B = −A

EN = A(
q

p
)N +B − N

p− q
= 0

=⇒ A((
q

p
)N − 1) =

N

p− q
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=⇒ A =
N

(p− q)(( qp )N − 1)

Our final solution is then (for p 6= 1
2)

En =
N

(p− q)(( qp )N − 1)
(
q

p
)n − N

(p− q)(( qp )N − 1)
− n

p− q
(5)

Suppose p = 1
2 . We get a repeated solution λ = 1, meaning we try the next most complicated solution

to the homogeneous equation

wn = (An+B)λn = (An+B)

For the particular solution to the equation

En+1 − 2En + En−1 = −2

we try vn = Cn2 as the next most complicated particular solution. Substituting this into the heteroge-
neous equation above

C(n+ 1)2 − 2Cn2 + C(n− 1)2 = −1

giving

C = −1

The full equation is then

En = wn + vn = An+B − n2

Applying the boundary conditions

E0 = B = 0

EN = AN −N2 = 0 =⇒ A = N

Giving the final equation for En

En = wn + vn = Nn− n2 (6)

In summary

En =


Nn− n2 if p = 0.5

N
(p−q)(( q

p )
N−1)

( qp )
n − N

(p−q)(( q
p )

N−1)
− n

p−q if p 6= 0.5 and p 6= 0

n if p = 0

(7)

Note: The case where p = 0 is obtained by multiplying the numerator and denominator of the first to
terms in the equation for the p 6= 0.5 case by pN and simplifying.

4 Simulations
Simulations are carried out using the accompanying Python app utilising Pygame for visualisation.

It is expected that if the win probability is 1 (p = 1), the probability of the Gambler going bankrupt
should be 0 and the expected number of steps should be the number of steps required to go from the current
fortune to $N. This can be seen in figure 4 where each of the 1000 simulations carried out follow the exact
same path. If the the win probability is 0 (p = 0), then we expect that the probability of the Gambler
going bankrupt should be 1 and the expected number of steps should be the number of steps required
to go from the current fortune to $0. This can be seen in figure 5 where each of the 1000 simulations
carried out follow the exact same path. Two further simulations are carried out with identical parameters
but different starting fortunes. Figures 3 and 6 show that a starting fortune closer to $0 increases the
probability of bankruptcy.
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Figure 3: This is a plot of 1000 simulations with k = 13, p = 0.5,N = 26. The theory results in a probability
0.5 of bankruptcy and an expected number of steps of 169. The horizontal green line represents $N and
the horizontal red line represents $0. We can see that the simulated probability of 0.498 and the simulated
average number of steps of 173 is close to the theoretical values.
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Figure 4: This is a plot of 1000 simulations with k = 13, p = 1, N = 26. The theory results in a probability
0 of bankruptcy and an expected number of steps of 13. The horizontal green line represents $N and
the horizontal red line represents $0. We can see that the simulated probability of 0 and the simulated
average number of steps of 13 exactly match the theoretical values.
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Figure 5: This is a plot of 1000 simulations with k = 13, p = 0, N = 26. The theory results in a probability
1 of bankruptcy and an expected number of steps of 13. The horizontal green line represents $N and
the horizontal red line represents $0. We can see that the simulated probability of 1 and the simulated
average number of steps of 13 exactly match the theoretical values.
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Figure 6: This is a plot of 1000 simulations with k = 3, p = 0.5,N = 26. The theory results in a probability
0.8846 of bankruptcy and an expected number of steps of 69. The horizontal green line represents $N
and the horizontal red line represents $0. We can see that the simulated probability of 0.898 and the
simulated average number of steps of 68.85 match the theoretical values closely.
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